แจ้งเอกสารไม่ครบถ้วน, ไม่ตรงกับชื่อเรื่อง หรือมีข้อผิดพลาดเกี่ยวกับเอกสาร ติดต่อที่นี่ ==>
หากไม่มีอีเมลผู้รับให้กรอก thailis-noc@uni.net.th ติดต่อเจ้าหน้าที่เจ้าของเอกสาร กรณีเอกสารไม่ครบหรือไม่ตรง

Change detection for surface mining boundary based on multi-source remote sensing images

LCSH: Burapha University -- Faculty of Geoinformatics
Classification :.DDC: 910.285
LCSH: Image processing -- Digital techniques
LCSH: Remote-sensing images
LCSH: Geographic information systems
Abstract: Mining is an important industry in Thailand. It can levy gross mineral royalties an average of 3 billion Thai baht per year, and The Minerals Act, B.E. 2560, regulates the industry. The Department of Primary Industries and Mines (DPIM), part of the Ministry of Industry, is in charge of monitoring and promoting the mining industry, including mineral trading, as well as establishing safety and pollutioncontrol regulations. In the past, mining outside the permissible limits frequently occurred. It negatively affects royalty storage and the environment. Because of mining supervision, there are also limitations to tools, methods, personnel, expenses, as well as regulatory frequency. This study applied data from freely available satellite data and opensource software. To assess the suitability of satellite technology applications to detect changes in horizontal and vertical mining in small mining areas to suit mining areas in Thailand. There are two study areas, selected from the average size of all mines currently mining. The satellite data used in this study include Sentinel-1, Sentinel-2, and Landsat 8. The validating data is from the allowed agent to ensure the reliability and accuracy comprising topographical mining data measured by unmanned aircraft (UAV) from DPIM which have high resolution, and the Digital Elevation Model (DEM) from the Royal Thai Survey Department (RTSD). The research methodology used in this study is to extract the boundary of horizontal mining by applying Sentinel-2 data and Landsat 8 by Mean-Shift algorithm and classifying mining areas with Random Forest (RF) algorithms obtains classified into two classes: Mining and Non-mining. The performance of the classification result was assessed based on the confusion matrix formed using the 32 observations for study area 1 and 34 observations for study area 2 from the test samples. The overall accuracy was calculated using the confusion matrix. The vertical boundary mining analysis has applied Sentinel-1 data to extract DEM using InSAR techniques. Then used the DEM compared with RTSD DEM, statistically analyzed by using a coefficient of determination (R²) and root mean squared error (RMSE). Analyzing changes in vertical mining using DEM data obtained from the InSAR technique and analyzing the volume changes of two periods. The result of horizontal mining boundary extraction from Sentinel-2 and Landsat 8, In the first study area round 1 has an overall accuracy of 95.66% and 86.57%. Round 2 of the first study area is 97.47% and 96.50%. In the second study area, round 1, the overall accuracy is 100% and 99.35%. Round 2 of the second study area is 99.26% and 95.90% respectively. Based on validation results, the satellite data from Sentinel-2 is more accurate than the horizontal boundary of mining compared to Landsat 8 data. When using the horizontal boundary of mining from sentinel-2 data to analyze changes in horizontal mining areas, the data of the mining area was used to analyze the changes in the horizontal mining area. In study area 1, mining expansion was 11.64% of the original mining area, according to the reference. And in study area 2, mining expansion was 11.79% of the original mining area, according to the reference. The result of DEM extraction has obtained the result as 14 m resolution of DEM and correlates when compares to DEM from UAV. The result found that the R² and RMSE values are 0.6038 and 34.279 for the study area 1 of the first round, 0.5621 and 35.731 for study area 1 of the second round, 0.2947 and 55.704 for study area 2 of the first round, and 0.2666 and 57.603 for the study area 1 of the second round. However, the DEM extracted from the Sentinel-1 is highly accurate, but it is not enough to need of vertical mining change analysis of a small mining area. Finally, the application and method of this research to use in change detection of horizontal and vertical surface mining boundaries. Sentinel-2 has a medium level of suitability for change detection of horizontal mining boundary since the change characteristic is similar to the reference data. Landsat-8 is not a suitable choice for horizontal change detection in small area mining and Sentinel-1 is not suitable for detecting the change in vertical mining in the small mining areas.
Burapha University. Library
Address: CHONBURI
Email: buulibrary@buu.ac.th
Role: Principal advisor
Role: Co-advisor
Created: 2022
Modified: 2023-03-14
Issued: 2023-03-14
วิทยานิพนธ์/Thesis
application/pdf
CallNumber: Th 910.285 Ka11C
eng
DegreeName: Master of Science
Descipline: Geoinformatics
©copyrights Burapha University
RightsAccess:
ลำดับที่.ชื่อแฟ้มข้อมูล ขนาดแฟ้มข้อมูลจำนวนเข้าถึง วัน-เวลาเข้าถึงล่าสุด
1 63910060.pdf 6.83 MB
ใช้เวลา
0.01939 วินาที

Kawipa sukkee
Title Contributor Type
Change detection for surface mining boundary based on multi-source remote sensing data techniques
มหาวิทยาลัยบูรพา
Kawipa sukkee;Shao, Zhenfeng;Kitsanai Charoenjit;Tanita Suepa;Pattama Phodee;กวิภา สุขขี;กฤษนัยน์ เจริญจิตร;ฐนิตา เสือป่า;ปัทมา พอดี

บทความ/Article
Change detection for surface mining boundary based on multi-source remote sensing images
มหาวิทยาลัยบูรพา
Kawipa sukkee
Shao, Zhenfeng
Kitsanai Charoenjit
วิทยานิพนธ์/Thesis
Shao, Zhenfeng
Title Creator Type and Date Create
Change detection for surface mining boundary based on multi-source remote sensing images
มหาวิทยาลัยบูรพา
Shao, Zhenfeng;Kitsanai Charoenjit
Kawipa sukkee
วิทยานิพนธ์/Thesis
Kitsanai Charoenjit
Title Creator Type and Date Create
The application of geoinformatics for studying abundance and distribution of land snails (Cyclophorus spp. and Hemiplecta distincta) in East and Northeast of Thailand
มหาวิทยาลัยมหิดล
Sayam Aroonsrimorakot;Niwooti Whangchai;Kitsanai Charoenjit
Thitimar Chongtaku
วิทยานิพนธ์/Thesis
Using drone mapping to support EEC development plan by analyze risky area and predict LULC at Sichang Island, Chonburi province, Thailand
มหาวิทยาลัยบูรพา
Zhenfeng Shao;Kitsanai Charoenjit
Suwatcharapong Surasanpreedee
วิทยานิพนธ์/Thesis
Health status detection of oil palm tree using an unmanned aerial vehicle multispectral image based on picterra platform
มหาวิทยาลัยบูรพา
Zhenfeng Shao;Kitsanai Charoenjit
Hong Lay
วิทยานิพนธ์/Thesis
Tree height estimation using field measurement and Low-Cost unmanned Aerial Vehicle (UAV) at Phnom Kulen national Park of Cambodia
มหาวิทยาลัยบูรพา
Hong Shu;Kitsanai Charoenjit;Haoran Zhang
Ly Mot
วิทยานิพนธ์/Thesis
Change detection for surface mining boundary based on multi-source remote sensing images
มหาวิทยาลัยบูรพา
Shao, Zhenfeng;Kitsanai Charoenjit
Kawipa sukkee
วิทยานิพนธ์/Thesis
Image classification and change analysis of Ca-Markov for land use/land cover of BangLamung District, Pattaya City, Chon Buri Province, Thailand
มหาวิทยาลัยบูรพา
Hong Shu;Tanita Suepa;Kitsanai Charoenjit
Bawonluck Wiboonwatchara
วิทยานิพนธ์/Thesis
Earthquake and conflict-related urban damage assessment using coherence change detection with Sentinel-1 imagery
มหาวิทยาลัยบูรพา
Timo Balz, Ing;Kitsanai Charoenjit
Methichai Obom
วิทยานิพนธ์/Thesis
Copyright 2000 - 2025 ThaiLIS Digital Collection Working Group. All rights reserved.
ThaiLIS is Thailand Library Integrated System
สนับสนุนโดย สำนักงานบริหารเทคโนโลยีสารสนเทศเพื่อพัฒนาการศึกษา
กระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม
328 ถ.ศรีอยุธยา แขวง ทุ่งพญาไท เขต ราชเทวี กรุงเทพ 10400 โทร. โทร. 02-232-4000
กำลัง ออน์ไลน์
ภายในเครือข่าย ThaiLIS จำนวน 2
ภายนอกเครือข่าย ThaiLIS จำนวน 1,221
รวม 1,223 คน

More info..
นอก ThaiLIS = 76,452 ครั้ง
มหาวิทยาลัยสังกัดทบวงเดิม = 45 ครั้ง
มหาวิทยาลัยราชภัฏ = 1 ครั้ง
มหาวิทยาลัยเทคโนโลยีราชมงคล = 1 ครั้ง
รวม 76,499 ครั้ง
Database server :
Version 2.5 Last update 1-06-2018
Power By SUSE PHP MySQL IndexData Mambo Bootstrap
มีปัญหาในการใช้งานติดต่อผ่านระบบ UniNetHelp


Server : 8.199.136
Client : Not ThaiLIS Member
From IP : 216.73.216.208